Reactive Astrocytes, Vesicle Traffic and Regulated Exocytosis
نویسندگان
چکیده
منابع مشابه
Commentary SNAREs and regulated vesicle exocytosis
Synaptic vesicle exocytosis—the basis for neurotransmitter release at nerve terminals—is at the heart of nervous system functioning. The molecular analysis of this special form of exocytosis was recently greatly stimulated by the finding that the key molecules in various intracellular vesicular transport steps, including neurotransmitter release, are conserved from yeast to man (1–3). Prompted ...
متن کاملSynaptic vesicle proteins and regulated exocytosis.
The recent identification of novel proteins associated with the membranes of synaptic vesicles has ignited the field of molecular neurobiology to probe the function of these molecules. Evidence is mounting that the vesicle proteins vamp (synaptobrevin), rab3A, synaptophysin, synaptotagmin (p65) and SV2 play an important role in regulated exocytosis, by regulating neurotransmitter uptake, vesicl...
متن کاملPhysiopathologic dynamics of vesicle traffic in astrocytes.
The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability...
متن کاملRapid regulated dense-core vesicle exocytosis requires the CAPS protein.
Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca(2+)-dependent activator protein for secretion), a protein required for Ca(2+)-dependent exocytosis of dense-core vesicles, secretory response...
متن کامل-regulated Exocytosis
Kinesin and myosin have been proposed to transport intracellular organelles and vesicles to the cell periphery in several cell systems. However, there has been little direct observation of the role of these motor proteins in the delivery of vesicles during regulated exocytosis in intact cells. Using a confocal microscope, we triggered local bursts of Ca 2 1 -regulated exocytosis by wounding the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroscience
سال: 2009
ISSN: 1662-453X
DOI: 10.3389/conf.neuro.01.2009.16.040